
README

Introduction

This is GIOS Project III Spring 2024 Readme file from course CS6200.

It has two sections.

1. Proxy server

2. Cache server

Part I: Proxy Server

The multithreaded proxy server acts as a mediator, handling

requests from clients to servers. It utilizes libcurl to query

webservers and fetch files. The request URL is set using

CURLOPT_URL. After a successful curl perform operation, the

response code and file length are fetched using CURLINFO functions.

The proxy then sends corresponding header to the client via

gfs_sendheader based on the server's response code. For each data

chunk read by libcurl, the registered CURLOPT_WRITEFUNCTION

callback is invoked, filling the CURLOPT_WRITEDATA buffer with file

content. This buffer is then sent to the client using gfs_send,

repeating until all file content is delivered.

Testing:

1. Single proxy thread tested against varying client request volumes,

providing appropriate responses per requested file.

2. Multiple proxy threads successfully handled diverse client request

loads, downloading requested files.

Part II: Cache Server

Project Design :

Command channel : POSIX message queue

Data channel : POSIX shared memory

File transfer between client/server via proxy/cache was

implemented using Inter-Process Communication (IPC). The

multithreaded client sends requests to the multithreaded proxy,

which passes them to the cache through a command channel. Cache

server receives the requests and serves the file contents back

through Data channel.

Implementation

The proxy server first creates and resizes shared memory segments

(shm_open, ftruncate) and maps them to its process space using

mmap. As pointers from one process are not visible to another, all

metadata and synchronization constructs need to be on shared

memory. The shared memory data structure has a flexible array for

file data along with metadata. Mapped shared memory pointers

(cast to structs with distinct segment IDs) are placed in a steque,

protected by a mutex and condition variable for thread

synchronization.

Client requests are tagged with a shared memory pointer from the

steque and sent to the cache via a message queue. Then the pointer

is enqueued back to serve other requests. Request concurrency

depends on available free segments; threads wait on the steque for

free memory when segments are busy.

The cache uses a boss-worker model. The boss creates the message

queue and workers. Workers retrieve requests from the multi-thread

safe queue and process them. Three semaphores signal file status,

file size, and read/send synchronization between cache and proxy.

Each request uses a shared memory segment during transfer. The

cache maps to the segment, resizing it per file size. If the file is not

found, the status is updated, and the proxy is notified via

semaphore. Found files have their sizes updated, and data is read in

chunks, memcpied to the shared buffer. The cache waits while the

proxy sends data to the client, signaled to read the next chunk until

all data is sent.

When the file is successfully transferred, the memory pointer is

enqueued to be reused.

Testing:

1. Began with single-threaded client, proxy, and cache to test

successful single request processing for GF_OK,

GF_FILE_NOT_FOUND cases, and file downloads.

2. Implemented multithreading for proxy, client, and cache,

testing with varied request volumes, thread counts, segment

counts, and segment sizes.

3. Tested scenario where requests exceeded available segments,

verifying dequeued and re-enqueued segments were

successfully reused by proxy threads.

References:

“C++ - Sending Image (JPEG) through Socket in C Linux.”

https://stackoverflow.com/questions/15445207/sending-image-jpeg-through-

socket-in-c-linux.

“C Library Function - Memset() - Tutorialspoint.”

https://www.tutorialspoint.com/c_standard_library/c_function_memset.htm

Curl.haxx.se. 2020. Libcurl Example - Ftpuploadresume.C.

C++, S., Isaksson, J., Laagland, M. and Köhler, U., 2020. Save Curl Content

Result Into A String In C++. Curl.haxx.se. 2020. Libcurl Example - Getinmemory.C.

“C - Differ between Header and Content of Http Server Response (Sockets).”

https://stackoverflow.com/questions/16243118/differ-between-header-and-

content-of-http-server-response-sockets.

Users.pja.edu.pl. 2020. POSIX.4 Message Queues.

“POSIX Threads Programming.”

https://hpc-tutorials.llnl.gov/posix/#PassingArguments

Referred the below Github file to understand the process control flow

https://github.com/xericyang97/GIOS/tree/main/Project3

Photo from the below Github file control flow

https://github.com/ JianchengGuo/GIOS6200/ /tree/master/

Gist. 2020. POSIX Shared Memory IPC Example (Shm_Open, Mmap), Working On

Linux And Macos.

Kohala.com. 2020.

GeeksforGeeks. 2020. Flexible Array Members In A Structure In C - Geeksforgeeks.

https://stackoverflow.com/questions/15445207/sending-image-jpeg-through-socket-in-c-linux
https://stackoverflow.com/questions/15445207/sending-image-jpeg-through-socket-in-c-linux
https://www.tutorialspoint.com/c_standard_library/c_function_memset.htm
https://stackoverflow.com/questions/16243118/differ-between-header-and-content-of-http-server-response-sockets
https://stackoverflow.com/questions/16243118/differ-between-header-and-content-of-http-server-response-sockets
https://hpc-tutorials.llnl.gov/posix/#PassingArguments
https://github.com/xericyang97/GIOS/tree/main/Project3
https://github.com/%20JianchengGuo/GIOS6200/%20/tree/master/

